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WHAT IS A MODEL?



Some examples of models




We are all modellers

“This model will be a simplification and an idealization, and
consequently a falsification. It is to be hoped that the features
retained for discussion are those of greatest importance in the
present state of knowledge.” Turing, 1952

A.M. Turing, The chemical basis of morphogenesis, Phil. Trans.
R. Soc. B, 237, 37-72 (1952)

“All models are wrong, but some are useful” (George Box)

In this section a mathematical model of the growing embryo will be described. This model
will be a simplification and an idealization, and consequently a falsification. It is to be
hoped that the features retained for discussion are those of greatest importance in the
present state of knowledge.




Different modelling approaches

* In Vivo Models

* In Vitro Models

* Data-Driven Models

* Mechanistic Models
increasing abstraction
increasing understanding

decreasing tractability



Turing wanted to know how patterns form.




For example, how animals have such colourful coat markings,

how a tree branches (so that it's cross-sectional circular
symmetry is broken).



Symmetry Breaking




The Chemical Basis of Morphogenesis
A. M. Turing

Phil. Trans. R. Soc. Lond. B 1952 237, 37-72
doi: 10.1098/rstb.1952.0012



For example, in the case of the tree, he assumed that
trees respond to a growth hormone that has a circular
distribution but that an instability arises that causes it to
have local maxima, and this is where the branches form.

In general, he called these chemicals “morphogens” as
they gave rise to form. That is, they form a pre-pattern
to which cells respond.



But, walt

He said:

It 1s suggested that a system of chemical substances, called morphogens, reacting together and
diffusing through a tissue, 1s adequate to account for the main phenomena of morphogenesis.

*

But we know that diffusion wipes out
pattern!



Diffusion wipes out pattern

Diffusion

I.e., diffusion is stabilising — and we can prove it!




9¢c _np2
P =DV<c + f(c)
where c(x, t) is density/concentration of substance at position x and time t.

D is a positive constant and f is typically a polynomial or rational function.

A spatially uniform steady state is a constant value of c(x, t) (c¢*), such that
f(c*) =0 and it also satisfies the boundary conditions.

Linearising [ c(x,t) = c* +¢&(x,t) ], using Taylor’s theorem
and ignoring higher order terms we have, in 1-D for example:
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For the case of a domain of length L, with fixed boundary conditions at

the steady state, the solution to this linear equation is:
~_n§: () Dnznzt . nmx
¢ = exp{f’ (c 1z It sin 7

n=1

If f'(c*) > 0, then the steady state is unstable in the
absence of diffusion since the perturbation ¢ grows in time.

2
However, if D > %f’(c*), then the steady state is stable in the
presence of diffusion.

DIFFUSION IS STABILISING



Turing considered a system of two chemicals reacting and
diffusing on a ring:

L X, T +u(X 0 —2X,+ X, )

dY,
dt

g( )-|—V( r+l 2Yr+ Yr—l)



% =DV4c + f(c)
where ¢ and f are 2x1 vectors and D is a 2x2 matrix

fut gy <0
fugv _fvgu >0

szu + Dlgv > O
Dy fy + D19y > 2\/D1D2 (fu9v — fo9u)

where the function derivatives are evaluated at the

steady state and the concentrations (components of c)
are u and v

ey = (8 o (0

For the second case, u activates itself and also activates v but, in
return, v inhibits u.

Moreover, from the inequalities, it follows that D, > D,



That is, the inhibitor diffuses faster than the activator — leading to the idea
of short-range activation, long-range inhibition

Liu et al Type 1: Growth-driven self-organization (Activator-inhibitor principle)
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Short-range activation, long-range inhibition
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Ficure 2. An example of a ‘dappled’ pattern as resulting from a type (a) morphogen system.
A marker of unit length is shown. See text, §9, 11.

Example simulation from Turing’s paper



Quick Aside

We do not need two (or more) chemicals if we have more
complicated transport.

For example, the Cahn-Hilliard equation:

% = DV*(f(N) —«kV*N)

Cahn JW, Hilliard JE. Free energy of a nonuniform system 1 interfacial free energy. J] Chem Phys 1958;28:258-67.



A crucial part of the analysis is that the solution to the linearised
reaction-diffusion system can be written in the form X(x)T(t)
where

V2X = —k?X

and X satisfies the boundary conditions.

That is, the spatial component of the solution is the eigenfunction of
the Laplacian subject to the boundary conditions.

So, at least for the linearised system, the patterns should
satisfy the following properties:

1. In one-dimension, for small domains there is no pattern.
2. As the domain increases in length, the complexity of the
pattern increases.



Eg, for zero flux boundary conditions on the domain
[0, L], the spatial component will be of the form cos%

2.2
where n is an integer such that —>— € (k2,k3), where
k_ and k, are fixed by the parameters in the model.

n

For the domain [0, L, ]x[0, L, ] with zero flux boundary
conditions we have solutions of the form

nmx — mmy

cos COS

where

2.2 2.2
T+ T e (k% k2).
Ly Ly ’

3. Therefore, long thin strips will have stripes (m = 0)

while broader domains will have spots —
developmental constraint.



Some examples of f and g (the reaction parts of the reaction-diffusion model).

Gierer-Meinhardt Model (1972): phenomenological model:
k3u2

f=ki—ku+ , g = ksu®—kev,

v
where the k’s are positive constants.

Thomas Model (1975): empirical model for uric acid (u) and oxygen v:
f=ki—ku —h(uv), g= ks—kwv —h(uv),

ksuv , o
where h(u,v) = 2 , and the k’s are positive constants.
k6+k7u+k8u2

Schnakenberg Model (1979):
f=ki—kyu+kyu?v, g= k,— ksu®v,
where the k’s are positive constants.

k
24+ B 534 = ks[A)? [B] (Law of Mass Action)



Patterns

Linear analysis turns out to be a pretty good predictor of patterns

(weakly non-linear analysis, numerical simulation, bifurcation
analysis etc. etc.).



APPLICATIONS



J.D. Murray
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FIGURE 18.2. Drawings of the
skeletons of the arm of a human, 3
salamander, and a chick. The basic
pattern is the same in each case, a
point emphasized by highlighting
comparable bones.



Data-driven modelling meets mechanistic modelling

A common genet (Genetta genetta) showing
the distinctly striped tail emerging from a spotted body. (Photograph courtesy of Hans Kruuk)

Developmental Constraint: Oster, Shubin, Murray, Alberch,
Evolution and Morphogenesis Rules. The shape of the
vertebrate limb in ontogeny & plylogency Evolution 45, 862-
884, 1988
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So, Just because the model agrees with
observations ...



Experiments

* If we were to decrease/increase the domain size of the limb
domain that produces digits would we obtain:

« Smaller/larger digits but the same number as normal?
« Fewer/more digits but the same size as normal?

The Turing model predicts the latter.



Fig. 18.7a-d. Experimentally induced alterations
in the foot of the salamander Ambystoma
mexicanum and the frog Xenopus laevis through
treatment of the limb bud with colchicine. (a)
Normal right foot of the salamander and (b) the
treated left foot. (c) Normal right foot of the frog
with (d) the treated left foot. (From Alberch and
Gale 1983: photographs courtesy of P. Alberch)



Limb bud

Donor Recipient

17.14a-c (a) Graft experiments involve taking a small piece of tissue from one limb bud and grafting it onto
another. The effect of such a graft is to induce increased cell proliferation and hence increase the subsequent
size of limb. The result is to induce growth commensurate with a domain in which multiple cell condensations
can be fitted in at each stage of growth and hence result in double limbs. (b) Photograph of a double limb in a
10 day chick following an anterior graft of tissue from the posterior region, the zone of polarizing activity (ZPA),
of another limb as in (a). The grafted tissue creates the appropriate symmetry which results in a mirror image
limb. (From Wolpert and Hornburch 1987: photograph courtesy of L Wolpert and A. Hornburch) (c) A natural
example of a double hand of a Boston man: note the lack of thumb and the mirror symmetry. (After Walbot and

Holder 1987).



A thin humerus in the single posterior limb
Two humeri in the double anterior limb

Wolpert and Hornbruch, Development, 1990, 109, 961-966



Assume that the inhibitor diffusivity is controlled, say via gap junctional permeability,
by a chemical, c, that diffuses from the anterior (cf Othmer and Pate, PNAS, 1980,
77, 4180-4184)
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PKM, Benson, Sherratt, IMA J.Math.Appl.Med.Biol, 1992, 9, 197-213



This model brings together Lewis Wolpert's classical positional information model
(1969, JTB, 25, 1-47) and the Turing model

(Wolpert, Development, 1989 Supplement, 3-12).

A B

Concentration

i = wE m mm am w wm am =

Le]
i

c

Distance

Positional information Turing

BrRUOMMER, F., ZEMPEL, G., BUHLE, P., STEIN, J.-C., & HuLsER, D. F. 1991 Retinoic acid
modulates gap junctional permeability: A comparative study of dye spreading and ionic
coupling in cultured cells. Exp. Cell Res. 196, 158—63.

Most of an organism, most of the time, is developing

from one pattern into another, rather than from homogeneity into a pattern.

11 1 L g, SRS -]



As mentioned before, the properties of Turing patterns from linear theory arise due
to the properties of the eigenfunctions of the Laplacian.

Therefore, the patterns are mechanism-independent in that models based on
alternative mechanisms eg cell aggregation via mechanical interaction (Oster,

Murray, Harris, J. Embryol. Exp. Morph, 1983, 78, 83-125) will make the same
predictions.



 J.D. Murray, Mathematical Biology, Springer 2002, 2003 (Xu, Vest, Murray,
Appl. Optics, 22, 3479-3483 (1983) — vibrating plates.



Counter-examples







Hans Meinhardt, “The Algorithmic
Beauty of SeaShells”




Position —

Figure 4.6. Steep lines. (a) Shell of Cypraea diluculum. (b) Model: if the activator autocatalysis has
an upper bound (saturation), the activated period within a cycle is relatively long and the stripes
are thick. If activator diffusion is low, the activation of one cell by its activated neighbour requires
time. Since the activated portion of the cycle is long, more time is available in which one cell can
infect its neighbour. Despite the large phase difference, this does not lead to wave termination.

A large phase difference can accumulate between neighbouring cells. The result is thick lines in

regions with high oscillation frequencies and very steep but narrow lines in regions with lower
oscillation frequencies. (c,d) Schematic drawing to illustrate the connection between line width
and maximum steepness; [S46].
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Figure 10.16. A photograph and model of Natica euzona

Figure 10.15. A photograph (see Sabelli, 1979) and model of Amoria undulata (Waved Volute)

Figure 10.18. A photograph (see Sabelli, 1979) and model of Oliva porphyria



Tiger brush patterns in ecology




Do Turing patterns exist?

* This is still a highly controversial area — many potential
activator-inhibitor morphogen pairs have been identified.

* However, in chemistry, the groups of DeKepper and Swinney
have shown that Turing patterns exist (CIMA — Chloride-lodide-
Malonic-Acid), and they have been modelled by Lengyel and
Epstein.
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Transition from a uniform state
to hexagonal and striped
Turing patterns

Q. Ouyang & Harry L. Swinney NATURE - VOL 352 - 15 AUGUST 1991 610-611

(d)
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|. Lengyel and I.R. Epstein, PNAS, 1992, 89, 3977-3979



Acc. Chem. Res. 1993, 26, 235-240

Turing Structures in Simple Chemical Reactions

IsTvAN LENGYEL AND IrVING R. EPSTEIN'




EFFECTS OF DOMAIN GROWTH

A reaction-diffusion wave on
the skin of the marine
angelfish Pomacanthus

Shigeru Kondo™* & Rihito Asalf

NATURE - VOL 376 - 31 AUGUST 1995 765-768
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FIG. 1 Rearrangement of the stripe pattern of Pomacanthus semicircu-
latus and its computer simulation. a-¢, Photographs of the juvenile of
P. semicirculatus. Ages are ~2 months (a), ~6 months (b) and ~12
months (c). Scale bars, 2 cm. d, Computer simulation of the reaction—
diffusion wave on the growing one-dimensional array of cells. One of
the five cells is forced to duplicate periodically (once in 100 iterations).
Concentration of activator is represented as the vertical height. The
equations for calculation are as fo'lows:

s C1A+Cal+Cs—Da dlAr—g-A s ~CaA+Cs—D o 8!

dt i axt Tt "

where A and | are the concentration of the activator molecule and the

Cell position

inhibitor molecule, respectively, D, and D, are the diffusion constants,
g~ and g, are the decay constants, and D,=0.007, D,=0.1, ga=0.03,
g=0.06, ¢, =0.08, c,=—-0.08, ¢;=0.05, c,=0.1, c,=—0.15. Upper
and lower limits for the synthesis rates of the activator (c; A+ c,/+cC3)
and inhibitor (ciA+cs) are set as O0-<c,A+c.l/+c¢3<0.18 and
0 <esA+c,<0.5. These upper and lower limits are set to avoid un-
realistic situations. A moderate upper-limit value of the activator syn
thesis rate is required to get a pattern of stripes rather than spots'*
(sp_ts are obtained if this value is exceeded). We used the kinetics of
Turing'. Other stripe-forming interactions'*'®, in which the upper and
lower limit is a natural outcome of the kinetics, can simulate the fish
pattern rearrangement reported here.



FIG. 2 Rearrangement of the stripe pattern of Pomacanthus imperator
(horizontal movement of branching points) and its computer simulation.
a, An adult P. imperator (~10 months old). b, Close-up of region | in a.
¢, d, Photographs of region | of the same fish taken two (c) and three (d)
months later. e, Starting stripe conformation for the simulation (region ).
f, 8, Results of the calculation after 30,000 (f) and 50,000 (g) iterations.
h, Close-up of region Il in a. i-l, Photographs of region Il of the same
fish taken 30 (i), 50 (j), 75 (k) and 90 (/) days later, respectively.

m, Starting stripe conformation for the simulation (region Il). n—q,
Results of the calculation after 20,000 (n), 30,000 (0), 40,000 (p) and
50,000 (q) iterations, respectively. Fish (Fish World Co. Ltd (Osaka))
were maintained in artificial sea water (Martin Art, Senju). Skin patterns
were recorded with a Canon video camera and printed by a Polaroid
Slide Printer. In the simulated patterns, darker colour represents higher
concentrations of the activator molecule. Equations and the values of
the constants used, as Fig. 1.
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FIG. 1 Rearrangement of the stripe pattern of Pomacanthus semicircu-
latus and its computer simulation. a-¢, Photographs of the juvenile of
P. semicirculatus. Ages are ~2 months (a), ~6 months (b) and ~12
months (c). Scale bars, 2 cm. d, Computer simulation of the reaction—
diffusion wave on the growing one-dimensional array of cells. One of
the five cells is forced to duplicate periodically (once in 100 iterations).
Concentration of activator is represented as the vertical height. The
equations for calculation are as fo'lows:

s C1A+Cal+Cs—Da dlAr—g-A s ~CaA+Cs—D o 8!

dt i axt Tt "

where A and | are the concentration of the activator molecule and the

Cell position

inhibitor molecule, respectively, D, and D, are the diffusion constants,
g~ and g, are the decay constants, and D,=0.007, D,=0.1, ga=0.03,
g=0.06, ¢, =0.08, c,=—-0.08, ¢;=0.05, c,=0.1, c,=—0.15. Upper
and lower limits for the synthesis rates of the activator (c; A+ c,/+cC3)
and inhibitor (ciA+cs) are set as O0-<c,A+c.l/+c¢3<0.18 and
0 <esA+c,<0.5. These upper and lower limits are set to avoid un-
realistic situations. A moderate upper-limit value of the activator syn
thesis rate is required to get a pattern of stripes rather than spots'*
(sp_ts are obtained if this value is exceeded). We used the kinetics of
Turing'. Other stripe-forming interactions'*'®, in which the upper and
lower limit is a natural outcome of the kinetics, can simulate the fish
pattern rearrangement reported here.



Effect of domain growth on cell density:

on
— + Veuv = (D,,V?n — Vex(u)Vu)) + n(ry + ra)

ol

v = (rixi + ryj)  Velocity field on a rectangular domain
u is one of the pair of chemicals in a

= val(k 2 :
x(u) = xo/(k + u) Turing model, and serves as a
chemoattractant.

Thick and thin stripes

K.J. Painter, PKM, H.G. Othmer, 1999, PNAS, 96, 5549-5554



Multiple chemotactic cues:

Jn

{’}_r =V - {D,Vn —nyi(u,v)Vu —ny(u, v)Vuv},
{

du .

— = V(Dy, - Vu)+ f(u,v),

ot

dv

- = V(D, -Vv)+ g(u, v),

[

W

4.1 = [

K.J. Painter, PKM, H.G. Othmer, 2000, J.Math. Biol., 2000, 41, 285-314



Still a very active field!!
Effects of curvature and complex evolving domains, coupling patterning

mechanisms, patterns within cells, identification of possible Turing morphogens.

“Recent Progress and Open Frontiers in Turing’s Theory of Morphogenesis”
Phil. Trans. A (A. Krause, V. Klika, E.A. Gaffney, PKM)



BUT, from where do the cells come?



Neural Crest

A transient embryonic structure in vertebrates that gives rise to most of the
peripheral nervous system and several non-neural cell types (muscle cells in
the cardiovascular system, pigment cells, etc. etc.)



Stowers Institute for Medical Research

With Ruth Baker and David Kay (Oxford)

Louise Dyson (now at Warwick)
Linus Schumacher (now at Edinburgh)
Rasa Giniuniate (Oxford) S8t '




Epidermis

facia¥vestibular cohlear nerve (VW)
connactive tissue

1Spicher and Michel (2007)
2Kulesa et al. (2004)
Courtesy of P. M. Kulesa, Stowers Institute



Why study this?

66 birth defects are a result of neural crest problems (neurocristopathies)

Cranial neural crest cells are very similar in behaviour to the highly aggressive
cancers, melanoma and neuroblastoma — serves as a powerful paradigm and is
experimentally tractable.



Very little proliferation of the NC cells

Random movement of cells is too slow to account for invasion
(simple calculation using mean-squared displacement)



Model Hypothesis

Can a chemoattractant (VEGF — vascular endothelial growth factor)
produced by the overlying ectoderm be sufficient for robust invasion?

Reaction-diffusion PDE for VEGF with saturating (logistic) source
production and sink terms for the cells.

> chemoatiractant HD dilution
‘ o o Nit) 9 \ \ ‘
de 1 d=¢ d-c A Lz — ;) + (v — vs)*® L
[ — D N — 17 — ! - s a 1 —p — —p
ot (L? i .i}{u?) ‘ ; 22 P [ 2R Fxell—e) =
diffusion internalisation production
I': Lan[t_t.i}L'ch_' Lxeﬂ(_t-ﬂj;—'mﬂ
L.(t)= Lo (Lx "1 1 eali—t)E +1 - I _ 1= Ea(_t_h.j,[.._b)



Assume a sink at the boundary (Homogeneous Dirichlet BCs -- later on we use
zero flux —Neumann— conditions)

Cells are discrete entities — sense the gradient and move with constant speed
in direction of increasing VEGF



120

Cell invasion with one cell type

100

200

J00 400 500 600 700 &©OO 900

1000

1100

[

0.45



Cell invasion with “leaders” and “followers”

Cell invasion with followers
T T T T T T T T T T nA9
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Hypothesis Generation: “Leaders and Followers’

Old Model New Model
B Cell invasion'1 subpopuiation G Cell nvasion/2 subpopulations
120 ' 500 1000 (1)%0 500 1000

24h R ] 23
20 G 0. 09 0.
Model simulations oi OIO 3 0

0.12.24h 0.12.24h

R. McLennan, L. Dyson, K.W. Prather, J.A. Morrison, R.E. Baker, PKM, P.M. Kulesa, Multiscale mechanisms of
cell migration during development: theory and experiment, Development. 139, 2935-2944 (2012)



Bioinformatics meets mathematical modelling

A Single cell isolation B PCA of single neural crest cells C Violin plots of single neural crest cells
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Fig. 6. Single trailblazer NC cells have a unique molecular profile. {A) Isolation of single NC cells (blue circle) from each quartile of the cranial NC stream.
(B) PCA of single trailblazer and quartile NC cells. {C) Violin plots of selected genes. (D) Hierarchical clusterings of single traiblazer and quartie NC cells by
Euclidean distance or Pearson dissimilarity based upon averages of the 96-gene profies. n=318 cells total: =72 HH stage 13 frailblazers, n=76 HH stage 15
trailblazers, n=43 quartile 1, n=41 quartile 2, n=44 quartile 3 and n=42 quarfile 4.

Trailing cells upregulate cadherin 11

R. McLennan, L.J. Schumacher, J.A. Morrison, J.M. Teddy, D.A. Ridenour, A.C. Box, C.L. Semerad, H. Li, W. McDowell, D

Kay, PKM, R.E. Baker, P.M. Kulesa, Neural crest migration is driven by a few trailblazer cells with a unique molecular
signature narrowly confined to the invasive front, Development, 142, 2014-2025, (2015)



Transplant followers to the front
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R. McLennan et al. / Developmental Biology 407 (2015) 12-25 19

A Tissue Transplantations D Model Simulations
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Fig. 5. Trailing neural crest cells respond to VEGF in vivo. (A) Cranial neural crest stream labeled with DiO (green) (n=18 embryos). (B) VEGF-expressing cells (red) were
transplanted adjacent to trailing portion of the cranial neural crest stream (green) (n =12 embryos). (C) Ectopic VEGF cell transplant (red) placed within the trailing portion of
the cranial neural crest stream (green) (n=11 embryos). (D) Representative control model simulation. (E) Representative model simulation with increased chemoattractant
production at bottom left edge of domain from t=12 h onwards. (F) Representative model simulation with increased chemoattractant production at bottom left area from
t=12 hours onwards. (G) Average number of neural crest cells found in area adjacent to r3. (H) Width of the stream at the transplant. Ctrl - control, no transplant, Ctrl* -
control, non-VEGF expressing cell transplantation adjacent to stream. (I) Migration profiles of control and perturbed simulations, averaged over n=20 simulations. Solid
lines=leaders, Dashed lines=trailers. Blue=Ctrl, Gold=VEGF within, Green=VEGF adjacent
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DAN expression
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Conclusion

Biology leads to new mathematics
and, in turn, mathematics leads to
new biology.
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